
XVTnet User Manual

Copyright 2009 Providence Software Solutions, Inc 1

Copyrights

© 1992–2009 Providence Software Solutions, Inc. All rights
reserved.

The XVT application program interface, XVT manuals and
technical literature, and XVT software may not be reproduced in any
form or by any means except by permission in writing from
Providence Software Solutions, Inc.

XVT, XVTnet, XVT Development Solution for C, XVT Portability Toolkit,
XVT-Design, XVT Development Solution for C++, XVT-Power++,
and XVT-Architect are trademarks of Providence Software
Solutions, Inc. Other product names mentioned in this document are
trademarks or registered trademarks of their respective holders.

Rogue Wave software and documentation is © Copyright Rogue
Wave Software, Inc. 1989–2009.

Published By

Providence Software Solutions, Inc.
201 Shannon Oaks Circle
Suite 200
Cary, NC 27511 USA

Revision History

First Printing June 2009 XVTnet Release 5.8

Copyright 2009 Providence Software Solutions, Inc 2

Contents

Introduction .. 6

Current Internet/Intranet solutions .. 6

The XVTnet Technology .. 6

Differences from Other XVT Platforms ... 7

Comparisons with Existing Technology .. 9

HTML/CGI ... 9

CGI or Common Gateway Interface .. 9

 ... 9

JAVA ... 9

The X Window System ... 10

Winframe .. 11

The Toolkit ... 11

User Events ... 12

GUI Commands ... 12

Information Requests ... 13

Security .. 13

Host-side Application Execution ... 13

Packet Encryption ... 13

User to Host Verification ... 13

Host to User Verification ... 14

Bandwidth ... 14

More Interactive WEB Pages ... 15

On-line banking .. 15

Client-Server .. 16

X Window System replacement .. 16

On-line Gaming ... 16

Educational Software ... 16

Subscription Software/Software as a Service (SaaS) ... 17

Multi-user Interactive Software ... 17

Enhanced Terminal Software .. 17

Setting up the XVT/XVTnet Build Environment .. 18

Copyright 2009 Providence Software Solutions, Inc 3

Changes to Existing XVT Makefiles ... 19

Executing an XVT/XVTnet Application .. 19

Setting up an XVT Application Server ... 19

Windows NT Application Server .. 19

Unix application server .. 20

Debugging .. 23

APP File Format ... 24

Linking to Your Application from the Web ... 24

XVTnet Resource Specifics .. 25

XVTnet Optimization Issues ... 25

Image Processing ... 26

Image handling .. 27

Pixmap handling .. 27

Image caching ... 27

Image compression ... 28

Error handling ... 28

Printing ... 28

Customizing the Client with Custom Messages .. 28

Sending a Message .. 29

Receiving a Message .. 30

XVTnet Encryption .. 30

Various log-in scenarios .. 32

XVTnet File transfer functions .. 33

Sending a file to the client .. 33

Fetching a file from the client ... 34

Command Line Arguments .. 34

netlink.cfg ... 35

Bookmark Files and the APP File Format ... 35

Linking to Your Application from the Web ... 35

Conclusion ... 36

 .. 36

APPENDIX A: Server Environment .. 37

APPENDIX B: SSL certificates ... 38

APPENDIX C: What is xinetd? .. 39

Copyright 2009 Providence Software Solutions, Inc 4

APPENDIX D: Typical xinetd configuration .. 40

APPENDIX E: Java Web Start Setup .. 41

APPENDIX F: Platform-Specific Attributes .. 45

Copyright 2009 Providence Software Solutions, Inc 5

Introduction

Current Internet/Intranet solutions

Currently many business and personal computer users are using the Internet and
Intranets to communicate, exchange information, and perform business in
general. The current technologies for these solutions include such items as WEB
thin clients, JAVA applications, and e-mail systems. WEB thin clients allow for
information to be displayed in a relatively straightforward manner as well as
allowing some interaction. JAVA applications or applets are generally used to
assist in the interactivity of WEB pages. E-mail is used for user-to-user
correspondence as well as file transmittal.

Because such efforts are producing specialized code for the Web technology, not
all IT experts are blindly endorsing this new framework as the ultimate panacea
for developing applications. In fact, a more traditional school of thought still
prefers the traditional client/server model for several reasons. Traditional
client/server applications can provide graphics interfaces far superior to stateless
Web interfaces through higher performance, more complex visualization and far
superior user experience. With the next generation of 64-bit processors, and the
continuing decreasing costs of memory, it now becomes possible to store large
data sets in memory, thereby taking advantage of computational models that are
much faster than traditional relational database access. Given the increasing
availability of communication bandwidth, it is becoming easier to develop
balanced solutions where the tradeoff between computation and communication
are adjusted at will. Given that deployment of client/server applications over the
Web has become a seamless process, it is becoming easier to leverage previous
investments to deploy applications over the Web.

One way this trend is seen is in the use of web services which are retrofitted to
legacy applications to serve their processing ability remotely to clients across the
network. Another way is to actually deploy the graphical user interface (GUI)
client of an existing application across the web. We will discuss XVT’s approach
to this second method of Internet deployment. We will also describe the benefits
that are offered by the XVT development framework which allows standalone
applications to be run over the web simply by recompiling them; this enables the
deployment of legacy applications over the Internet without the large investments
usually associated with Web technology migration efforts.

The XVTnet Technology

The XVTnet technology provides a completely new capability for developing
Internet and Intranet solutions. This technology provides a robust, flexible, and
secure capability for providing complete large-scale applications of virtually any
type across the Internet or Intranet. XVTnet is not information based, it is
application based, and thus provides a true solution for Internet applications

Copyright 2009 Providence Software Solutions, Inc 6

instead of a combination of information transfer mechanisms. With XVTnet, the
application resides on a host machine, yet it is executed and accessed from a
remote site. The host machine can support multiple users simultaneously. The
host and client are platform independent, thus any host can be accessed via any
client and vice versa.

Differences from Other XVT Platforms

The XVTnet platform is somewhat different from other XVT platforms in that it is
a combination of an existing XVT platform, an Internet-enabling component, and
NetLink, a remote application viewer.

An explanation of XVTnet will provide you with a clearer understanding of what
will and will not work with it. With XVTnet, the application that you compile and
execute becomes a server or server application with little actual user interface.
You create and interact with your user interface components on a separate
computer, the client or remote system. All code that is not user interface-related
occurs on the server side. This includes calculations, memory allocation, file
access, etc.

Because of the server and client interactions, most platform-specific operations
that are not user interface-based will work properly. However, any platform-
specific code that deals with the user interface will not work. One example is
creation of non-XVT windows and controls in your application. While an
application using non-XVT windows will compile and possibly run, the results are
not what are expected—the non-XVT windows created by your application will
actually display on your server machine. Another example involves the function
_beginthread which is specific to the Windows 32-bit platform, yet will work
properly under the Win32 version of XVTNET.

We currently do not support attributes that must be used before xvt_app_create.
These attributes include:

• ATTR_MEM_MANAGER
• ATTR_MULTIBYTE_AWARE
• ATTR_FONT_CACHE_SIZE
• ATTR_DEFAULT_PALETTE_TYPE

Non-portable attributes

On Windows platforms, there is a slight difference with how MDI mode is handled.
If a window is to be of any other type than W_DOC, its parent must be set to
TASK_WIN and not SCREEN_WIN.

The XVTnet platform has its own specific non-portable attributes, but may also
support some of the non-portable attributes of its server and client platform.

Copyright 2009 Providence Software Solutions, Inc 7

Any non-portable attributes which the platform supports will be provided as a
XVTnet platform-specific attribute with a name similar to that used by the
platform as follows:

ATTR_NET_RWIN_PM_SPECIAL_1ST_DOC

To allow the application developer to properly determine the current platform,
XVTnet provides three platform determination methodologies.

The first platform determination is provided as a platform-specific #define to
denote the system as a XVTnet platform. As with any XVT platform, the XVTWS
#define is used for the XVTnet server platform and will be equal to NETWS.

#if (XVTWS == NETWS)

The XVTnet platform also supplies proper #defines so that the developer may
detect which server platform is being used. To test the server platform being
used, the platform-appropriate XVTWS may be used with NET_ prepended as
follows:

#if (XVTWS == NET_WIN32WS)

This lets existing platform switches based on XVTWS to continue to work.

The final platform determination to be made is the determination of the platform
being used by NetLink, the remote application viewer. To determine this, the
developer is provided with a XVTnet attribute for retrieving the client system’s
platform as follows:

if (xvt_vobj_get_attr(NULL_WIN, ATTR_NET_REMOTE_WS) == WIN32WS)

Note that this information is retrieved at run time and must be coded as such
(not using #if, but if).

When using XVTnet attribute values that pertain to specific platforms, it is not an
error to use an attribute value that is not supported by the platform. In this case,
the attribute value will simply be ignored in the case of xvt_vobj_set_attr() and
will return 0 in the case of xvt_vobj_get_attr().

Please see the section on XVTnet-specific attributes for a full list of supported
attributes for the current platform.

WC_ICON controls aren’t supported. This may change in future revisions, but the
simple explanation is that on some platforms, the imagery data associated with
an icon must be bound into the application at link time with the rest of the
resources, which isn’t possible when the universal thin client NetLink is what the

Copyright 2009 Providence Software Solutions, Inc 8

user is really running locally. Work-arounds for this would include using
XVT_IMAGE images instead.

For the same reason, custom, application-specific cursors are not supported.

At this time, XVTnet is restricted to the use of the portable, bound help viewer for
application help files.

XVTnet does not support conversion between PICTs and files due to platform
dependencies. The problem is that to get picture data to and from a file requires
the use of xvt_pict_lock(). xvt_pict_lock() returns a pointer to the platform
specific data for the picture. This data is client-side specific, and thus it isn’t
always meaningful to the server. Future revisions may implement a platform-
independent PICT, but for now this functionality is not implemented.

Comparisons with Existing Technology

HTML/CGI

HTML is the language used by WEB thin clients to display information and HTTP is
a protocol for transferring HTML documents across the Internet. HTML stands for
Hyper-Text Markup Language and HTTP stands for Hyper-Text Transfer Protocol.
HTML is essentially a format for displaying text and graphics as well as allowing a
user to select links (hypertext) to access other HTML documents. This is how a
WEB page allows you to select link after link to traverse information. This is an
effective way of displaying information, but is quite restrictive in user interaction
capabilities.

CGI or Common Gateway Interface

CGI is a part of HTTP which allows users to enter information into a web page.
This information can then be transferred to a host machine by pressing a special
link on the page. This provides some added interaction with the host machine, as
users can actually send information to the host, but is still limited in its
capabilities. XVTnet allows full user interaction with the application. It provides
for user interactions with several different types of controls as well as direct
mouse and keyboard control of the application. It also provides for many different
types of graphical display options, not simply text and images.

JAVA

JAVA is a platform independent object-oriented language which can be used to
develop Internet/Intranet applications. The problem with JAVA is that the ap-
plication still must execute on the client machine. This requires that the
application be downloaded to the client, and then executed. This can result in

Copyright 2009 Providence Software Solutions, Inc 9

long start times for applications to download. There is also a possible security risk
because the application is running on the client machine. This opens the
possibility for the application to access to the client’s file system, operating
system, and anything else. Finally, because the application runs on the client, it
uses the client’s CPU for all of its processing. While this distributes CPU load, it
also causes the application to run only as fast as the client CPU. Because XVTnet
applications run on the host machine there is no need to download code before
executing. This results in instantaneous application execution. This also results in
complete client security. The host application only has access to host resources.

The toolkit is C/C++ based and thus can use any C or C++ based development
tools to assist in the development process. Because XVTnet applications run on
the host machine there is no need to download code before executing. This
results in instantaneous application execution. This also results in complete client
security.

Finally, because the application runs on the host, it uses the CPU of the host. This
can be a benefit in that a large scale mainframe can be performing calculations
and displaying them on a less powerful, remote desktop/laptop.

The X Window System

The X Window System is in many ways similar to the XVTnet technology, but with
a few differences. The most significant difference is in bandwidth requirements,
i.e. the required speed of data transmission for reasonable responsiveness. The X
Window System requires a high speed LAN for reasonable interaction. This is
most likely due to the software layering system used by X. The X Window System
is built upon the X protocol, a low-level window and drawing protocol. Layered
above the X protocol is the X Toolkit.

The X Toolkit defines widgets (controls) which the user can manipulate. Layered
above the X Toolkit are widget sets and window managers such as Motif and
Openlook. The X protocol does not understand widgets directly and therefore can-
not optimizes widget interaction for low bandwidth situations such as the
Internet. The X Consortium is currently working on a low bandwidth version of
the X protocol called X Fast. This protocol may assist in some the bandwidth
requirements, but X is still layered in software and as such may still have a high
bandwidth compared to XVTnet.

The X Window System also defines its own “look and feel” for X applications.
Microsoft Windows and Macintosh users may not be familiar with the X look and
feel and thus may not be able to use the applications to their best ability. The
XVTnet technology maintains the look and feel of the client’s operating
environment, independent of the host system OS.

Copyright 2009 Providence Software Solutions, Inc 10

Winframe

Winframe is another low-bandwidth GUI based terminal system. There are several
distinct differences between Winframe and XVTNET. Winframe is based upon the
Microsoft Windows GDI (Graphics Device Interface). The GDI was originally
designed for writing graphics device drivers to be used by Microsoft Windows in
rendering its graphics. GDI defines a set of graphics primitives with which to
display the user interface. Winframe captures these GDI calls and transmits them
across the internet for display on a client system. Although this is an excellent
way to display existing Windows applications on a remote terminal, it is not the
optimal method for developing Internet applications. XVTnet works at a higher
level than GDI. It defines a set of GUI primitives instead of a set of graphics
primitives. Because of this, XVTnet understands what an “Edit box” or a “List box”
is, instead of simply a set of rectangles and text. This allows XVTnet applications
to be more user responsive and interactive. This also allows the application
developer to write the application to best take advantage of the features offered
by the protocol. Yet another advantage to this “high level” protocol is the ability
for XVTnet applications to have the same “look and feel” of the client system,
NOT the host (Macintosh clients look like Macintosh applications, Windows
applications look like Windows, etc.).

As an example, if the user is scrolling through a list box filled with items, XVTnet
transmits those items to the client and requires no further interaction as the user
is moving around within the list. Winframe must constantly send new display
information as the user scrolls around in the list. This severely limits the speed
with which the user can interact with the control. An example of how the
developer can utilize the capabilities of the technology to his benefit is in
bitmap/image display. The developer can transmit all images required by the
program upon application startup. This then gives the user a one-time startup
delay, with no further delays in interaction.

Another difference between XVTnet and Winframe is that the XVTnet technology
is platform independent, Winframe is not. While Winframe clients can reside on
different types of machines, the Winframe host must reside on a special Winframe
version of Microsoft Windows. XVTnet is completely platform independent. The
host requires no special operating system and versions are available for Windows,
Macintosh, Linux, and UNIX.

The Toolkit

The XVTnet toolkit is what allows application developers to develop XVTnet server
applications. The XVTnet toolkit is a set of C sub-routine calls which can be used
to develop XVTnet applications. Because the toolkit is based on the C language,
most existing C/C++ development tools can be used to develop an XVTnet
application. All that is required is that the user interface be written with XVTnet
routines. This also makes XVTnet a completely embeddable technology. The

Copyright 2009 Providence Software Solutions, Inc 11

XVTnet subroutine set is based on an industry standard API for developing cross-
platform applications, XVT. XVT is already an industry leader in cross platform
development and greatly simplifies the design and coding of the GUI.

The XVTnet toolkit has three basic components:

A. User Events

B. GUI Commands

C. Information Requests

User Events

Events are the internal representation of user actions. There are 21 events
defined for XVTnet. These events include mouse actions, window sizing, window
manipulations, control manipulations, keyboard actions, display updating, and
timing events. The developer can receive these events and use them to design
how his application will interact with the user. XVTnet is completely platform
independent. The host server and the thin clients require no special operating
system and versions are available for Windows, Macintosh, Linux, and UNIX.

The XVTnet toolkit has three basic components:
A. User Events
B. GUI Commands
C. Information Requests

Yet another advantage to this “high level” protocol is the ability for XVTnet
applications to have the same “look and feel” of the client system, NOT the host
(Macintosh clients look like Macintosh applications, Windows applications look like
Windows, etc.). The developer can also choose which events need to be handled
and which ones don’t; thus, unnecessary events will not take up extra bandwidth.

GUI Commands

GUI Commands are used to create display objects or to display information to the
user. There are hundreds of commands in the XVTnet toolkit. These commands
include control creation and manipulation, clipboard handling, dialog and window
creation and manipulation, drawing, font handling, image manipulation, printer
handling and text editing.

Controls provided in the toolkit include all the standard GUI controls; push
buttons, radio-buttons, check-boxes, edit-boxes, list-boxes, popups, etc. This
gives the developer a full suite of user controls to work with. Clipboard support
allows XVTnet developers to access the client’s clipboard and retrieve as well as
place data on that clipboard. Dialogs and windows can be created, interacted with

Copyright 2009 Providence Software Solutions, Inc 12

and destroyed as necessary by the developer. All controls and drawing commands
are used within windows and dialogs. A full suite of drawing commands are
available to the developer including arrows, arcs, icons, images, lines, ovals,
complex pictures, pie-charts, polygons, polylines, rectangles, rounded-rectangles,
and text. In addition the toolkit supports clipping, multiple fonts, scrolling and
variable pen and fills parameters for all of the above. Font handling is also
included in the toolkit. Any font installed on the client machine will be available to
the host application. Full image manipulation is included which allows dynamic
image manipulation by the host program with automatic optimized update to the
client. Images can also be automatically transferred via JPEG compression to
optimize image display speed. The thin client allows the user to choose how to
display images (quality vs. Speed).

Printing capabilities are also included in the toolkit and allow the application
developer to perform any of the listed drawing commands on the client’s printer
as well as the screen. A full set of text editing capabilities are also included. These
capabilities are optimized such that most of the text editing manipulation is done
on the client so text editing is smooth and fast.

Information Requests

Finally, information requests are used to gather information about the client to
the host. These information requests include such things as listing the fonts avail-
able, retrieving printer information, retrieving clipboard data from the client,
retrieving values from controls, retrieving user screen information etc. These
information requests allow the developer to write his application so that it can
perform optimally on all systems.

Security

XVTnet is an extremely secure technology for several reasons.

Host-side Application Execution

The application executes on the host machine, not the client. This restricts the
application developer from accessing the client’s file system, operating system,
etc. The application developer only has access to the client’s user interface.

Packet Encryption

All transmissions between machines can be encrypted using a public-private key
encryption scheme. This prevents any outside hacker from “spying” on an XVTnet
session.

User to Host Verification

Copyright 2009 Providence Software Solutions, Inc 13

Users can be verified to the host without passwords being transmitted. The
remote system can request a password from the user, then use this password as
a key to encrypt the data. The host must also know the key to decrypt the data,
thus the password must be known by the host, but is never transmitted.

Host to User Verification

Hosts can be verified to the user via the methodology described above. If the
host does not have the user’s password, it cannot decrypt the user’s data. Thus
the host is verified to the user as well as the user verified to the host.

Bandwidth

What makes the XVTnet technology feasible for the Internet is its low bandwidth
requirements. XVTnet achieves this low bandwidth capability because it uses a
high-level event model combined with high level GUI commands. Because XVTnet
understands such items as controls and windows at a high level, much of the
work to implement the GUI is performed on the client. Also for any given event or
command, only the most minimal of information is transferred. More lengthy
operations have also been optimized with the use of compression techniques. The
most obvious of these is the automatic use of JPEG compression for transferring
images. This JPEG compression occurs even if the original image is not in JPEG
format.

The following are a few examples of bandwidth requirements and times
associated with them:

Creation of a dialog with 20 controls<TABLE FIXEDWIDTHS>

MACROBUTTON HtmlDirect *
Command Unit Qty Total
Dialog Creation 8 bytes 1 8 bytes
Control
Structures

28 bytes 20 560 bytes

Total 568 bytes
With a 14,400 baud connection this dialog would be displayed in 0.38 seconds
and would be under client control for screen updates and simple interactions.

Spreadsheet 5 columns wide by 10 lines high with an average of 10 chars
per cell.

Command Unit Qty Total

Lines Horizontal 8 bytes 5 40 bytes

Lines Vertical 8 bytes 10 80 bytes

Text in cells 14 bytes 50 700 bytes

Copyright 2009 Providence Software Solutions, Inc 14

Total 820 bytes

With a 14,400 baud connection this spreadsheet view would take approx. 0.57
seconds to draw.

Internet Applications

What makes the XVTnet technology feasible for the Internet is its low bandwidth
requirements:

Command Unit Qty Total
Dialog Creation 8 bytes 1 8 bytes
Control Structures 28 bytes 20 560 bytes
Total 568 bytes
Transit Time @ 56K ~.095 sec
Command Unit Qty Total
Lines Horizontal 8 bytes 5 40 bytes
Lines Vertical 8 bytes 10 80 bytes
Text in cells 14 bytes 50 700 bytes
Total 820 bytes
Transit Time @ 56K ~.143 sec

More Interactive WEB Pages

One use for XVTnet technology on the Internet is the ability for businesses to
provide more interactive WEB pages. Business is currently restricted to simple
HTTP/CGI interaction. This can make the implementation of even simple systems
difficult. Take as an example an inventory check/pricing system. The company
must create HTML documents listing their entire inventory as well as current
pricing for each item. Because HTML documents are static, the company will have
to make sure to “update” their documents periodically. A simple XVTnet
application can be written which reads the inventory database the instant the
user requests, display this information in a list box, and update the in- formation
if it changes while the user is on-line.

On-line banking

On-line banking and investing is another example of an XVTnet application.
Because of its built-in security, the bank or investment firm can guarantee the
proper user is on-line. Once on-line the user can have instant access to all of his
financial data in the form of spreadsheets. The user can click a few options and
answer a few prompts to transfer money, make payments, etc. The on-line bank
could even have a Quicken style interface to checkbook registers where the user
can enter new transactions and the bank could clear them as they arrive. The
possibilities are endless. XVTnet application can be written which reads the

Copyright 2009 Providence Software Solutions, Inc 15

application database the instant the user requests, display this information in a
list box, and update the information if it changes while the user is on-line.

Intranet Applications

Client-Server

The XVTnet technology can be used in the Intranet community to replace the
current use of client-server database applications. With client-server database
applications the data necessary for an application is accessed across the network.
This is generally expensive and depending on the application, may not be as
efficient as XVTnet. With XVTnet, only the data which is relevant to the user is
transferred across the network, if the user can’t see the data it doesn’t need to be
sent. XVTnet may also be more secure because the actual data never leaves the
host machine, only a view of the data. Finally, the XVTnet client can be
distributed free as compared to $1000 to $1500 per client for ORACLE.

X Window System replacement

Currently many corporations are using The X Window System to develop
corporate Intranet applications. XVTnet can be used as a replacement for this
with the following advantages. Due to the lower band-width requirements, slower
LAN speeds can be used for wide area Intranets and remote access to
applications. If PC X-Servers are being used as the client for these applications,
XVTnet can represent a significant cost savings (< $100 compared to >$500).
The look and feel of XVTnet applications match the platform upon which the client
resides, thus making applications more user friendly and reducing training costs.

On-line Gaming

On-line games and gaming are very popular, but currently to play an on-line
game you must first purchase some software that allows you to connect with the
game. With XVTnet the user would already have the software necessary to play
the game. Of course 3D action games (such as DOOM etc.) would not be possible,
but strategy games, card games, and board games are all excellent candidates
for XVTnet. Because the application resides on a host machine, multi-player
games can be developed very easily since all games are actually played on a
single machine.

Educational Software

Educational software is another candidate for XVTnet technology. Large volumes
of data can be stored on the server for use in the educational software, including
assignments, testing and scoring, interactive learning systems, etc.

Copyright 2009 Providence Software Solutions, Inc 16

Subscription Software/Software as a Service (SaaS)

Subscription software is yet another possibility with the XVTnet technology.
Because the developer is able to develop an entire application of virtually any
type, software firms may be able to lease the use of these applications (over the
Internet) to their subscribers. No longer would users be required to go to the
store, purchase software, install the software onto their machine, and configure
the software in order to use it. They could simply “subscribe” to a software
provider who would maintain their data files as well as the applications. The
provider would provide backup services, etc. so that the user doesn’t have to
worry about such things.

Multi-user Interactive Software

Any type of multi-user interaction is an excellent candidate for XVTnet
technology.

Enhanced Terminal Software

Many corporations are still using terminal based systems with connections for
central computer access. These terminal based applications can be replaced with
user friendly GUI applications without a lot of hardware costs. The current
connections can be used as PPP points to access XVTnet applications. Not only
does this make applications more user friendly, it also allows each user to run
multiple applications simultaneously on his/her display.

Copyright 2009 Providence Software Solutions, Inc 17

How XVTnet Works

XVTnet is a GUI (Graphical User Interface) Internet applications development
technology. Because XVTnet is a GUI development system, it is important to
know how GUIs are developed to understand how XVTnet works. GUIs or
graphical User Interfaces generally follow the same model, the event-driven
model. This model was developed by Xerox in the 1960s and has progressed to
the Macintosh, PC, Linux, and UNIX environments. The event model works as
follows. A user interacts with a workstation. These interactions are represented to
the system as Events. Events are such things as mouse movements, menu
selections, button presses, keyboard actions, etc. When the system receives an
event, it executes code to handle the event. This code produces some (usually
graphical) response to the user. The response may in-turn require more
interaction with the system thus generating more events, which cause more
responses, etc. This cycle of events and responses allows the user to perform any
action necessary to complete his job. XVTnet transports GUIs across the net. The
XVTnet technology uses this Event-response cycle to implement GUI applications
that can be run across the Internet.

XVTnet consists of a server application and a thin client that runs native on the
user's OS. The server application runs on a host machine on the network and is
accessed by the user’s thin client on a remote machine. The user’s thin client
receives user events and transmits them to the server application. The server
application then generates responses which are transmitted back to the user's
thin client for final display to the user. The server application is an application
which is developed with the XVTnet toolkit. This technology provides a robust,
flexible, and secure capability for providing complete large-scale applications of
virtually any type across the Internet or Intranet.

This section addresses the issues specific to compiling and running XVT
applications on the Internet. The information here assumes that you are familiar
with developing XVT applications on your specific platform. If you are not familiar
with developing and compiling applications for your platform, see the XVT
Platform-Specific book for your platform.

Setting up the XVT/XVTnet Build Environment

In order for Design-generated makefiles to work, the environment variable
XVT_XVTNET_DIR must be defined to be the full path to your XVT/XVTnet
installation directory. Windows example:

C:\> set XVT_XVTNET_DIR=C:\XVTNET92\

Once this is set, you can build the examples and your applications.

Copyright 2009 Providence Software Solutions, Inc 18

Changes to Existing XVT Makefiles

Only a few changes need to be made to existing XVT makefiles in order to make
them build with XVTnet instead of DSC:
• Instances of XVT_DSC_DIR should be changed to XVT_XVTnet_DIR.
• In the link line, library names should be changed to reflect the (different)

names of the XVT/XVTnet libraries. Usually, this means adding an ‘i’ to the
library name. See your lib directory for exact filenames for your platform.

Executing an XVT/XVTnet Application

When an application is compiled with XVTnet, it includes your application, plus an
application server module. When you execute the application, it automatically
runs the application server module before running your application. This module
establishes a connection with the client computer, exchanges parameters, then
calls your application’s “main()” routine. The application server module built into
your application can “serve” only your application and will only serve it up once.
Once the remote user requests to exit, your application exits and cannot serve
any more users. This mode is used primarily for debugging your application.
(Note that UNIX users will need to run as root to do this, since port 508 is a root-
restricted port under UNIX). When you are ready to put your application online,
you will have to set it up with the XVT Application Server.

Setting up an XVT Application Server

The XVT Application Server is a special executable module that allows you to
serve multiple users with multiple XVT Applications simultaneously. It also allows
you to define exactly what applications can be executed on your server platform.

NOTE: If you are trying to make a XVTnet server visible to the Internet, and you
are behind a firewall, you must work with your site administrators to find a way
to make port 508 (the XVTnet protocol port) visible across that firewall. If you do
not do this, users will not be able to connect to your application server using
NetLink.

Windows NT Application Server

The Application Server is an executable called appserv.exe. This application is in
the form of a Windows NT service. To install the service, execute the following
command line:

Appserv -install

This will then enable the service and place an entry in the Control
Panel/Administration Tools/Services list.

Copyright 2009 Providence Software Solutions, Inc 19

Start the service to enable it. To do this, simply run the Windows “services”
applet from the Control Panel/Administrative Tools. In the list you will find “XVT
Application Server Service” listed. Select that entry and press “Start.” This will
start-up the service and allows users to connect to your system. You must now
configure which XVT Applications are allowed to be executed.

To define which applications are to be executed, you must create a file called
trust.app (a sample can be found in the .\XVTNET\bin directory) in the Windows
System32 directory. This is a text file with the following format:

<appname> <startup path> <commandline>

Each entry specifies an application that can be executed by a remote user. The
<commandline> argument should point to an application developed with XVTnetT
(although this is not enforced).

The first entry in this file should be the default application. It is always named
“default” and is the application to be run if no other is specified. It is generally
used to either display a message or to allow the user to select another application
to run. Its entry has the following format:

default <startup path> <commandline>

After setting up your application’s file, users should be able to connect with
NetLink and run any of the applications you have specified. You can specify
various parameters in this command line. Built-in switches include:

-d or -D run as a daemon
-n or -N show the name
-l or -L enable logging
-os or -OS use SSL
-c or -C the SSL Certificate file name
-k or -K the SSL Key file name
-u or -U run as User

Unix application server

Usage:
appservd [-d] [-l] [-n]

-d Run as stand-alone daemon
-l Give verbose logging information
-n Show connected names in log file

Under Unix the application server daemon is called "appservd". This daemon is

Copyright 2009 Providence Software Solutions, Inc 20

responsible for accepting connections from the NetLink client and executing the
appropriate requested application in the trust.app file.

appservd can be run in two different modes, as a stand-alone daemon or from
the inetd daemon. The difference between them is that in order for the daemon
to be automatically started at reboot (in the final, production environment), it
needs to be run from the inetd daemon, while stand alone mode is sufficient for
the development process. To run appservd in stand-alone mode, execute it as
follows:

appservd -d

NOTE: appservd must be run as root when using stand-alone mode.

To run the appservd from the inetd daemon, you must make an entry in your
/etc/inetd.conf file as follows:

xvttp stream tcp nowait <user> <script_path>/<script_name>
<script_name>

where:
<user> is the userid to run the applications as
<script_path> is the full path to a script to run which will run appservd
<script_name> is the name of the script to run

NOTE: An entry for xvttp must also be in the /etc/services file. The standard port
number for xvttp is 508, but this may be changed as long as the NetLink clients
are also pointed to that port.

The script must properly set up the environment in which to run the XVTnet
applications. This includes setting environment variables for the DISPLAY as well
as any others such as shared library paths. The following is a sample script:

#!/bin/csh
change to the applications directory…
cd /xvtapps

set up the environment. The application still uses X-windows, so
the DISPLAY is still necessary.
setenv DISPLAY localhost:0.0
LD_LIBRARY_PATH applies to Sparc platforms, DEC, and others. See your
XVT Platform Specific Book for X/Motif for details.
setenv LD_LIBRARY_PATH /tools/X11R5/lib:/xvtlibs

execute the appservd daemon— DO NOT REDIRECT OUTPUT.

Copyright 2009 Providence Software Solutions, Inc 21

./appservd

Once these three files have been modified, the inetd daemon must be restarted.
Do so by sending a hang-up signal (HUP, or signal 1) to that process (or by
rebooting the machine):

ps -ef | grep inetd
root 382 10.0 Jun 13 ?? 0:00.87 /usr/sbin/inetd
root 32183992 0.0 13:17:52 ttyp0 0:00.01 grep inetd
#

Seeing that the inetd daemon is running (in this case) as process 382, we issue
the following command (notice the very important ‘-’ in front of the ‘1’!):

kill -1 382

Your application should now be able to accept connections, and will continue to do
so even after reboots.

To define which applications are to be executed, you must create a file called
trust.app (a sample can be found in the .\XVTNET\bin directory) in the /etc
directory. This is a text file with the following format:

<appname> <startup path> <commandline>

Each entry specifies an application that can be executed by a remote user. The
<commandline> argument should point to an application developed with XVTnet
(although this is not enforced).

The first entry in this file should be the default application. It is always named
“default” and is the application to be run if no other is specified. It is generally
used to either display a message or to allow the user to select another application
to run. Its entry has the following format:

default <startup path> <commandline>

After setting up your application’s file, users should be able to connect with
NetLink and run any of the applications you have specified. You can specify
various parameters in this command line. Built-in switches include:

-l Give verbose logging information
-on Enables no security (default)
-oa <password> Enables single-application-password security
-ou Enables user-password security
-op Enables public/private key security.

Copyright 2009 Providence Software Solutions, Inc 22

The –oa, –ou and –op parameters require application-specific coding in the server
and the NetLink customization library. See section 4.0 for more information.

Debugging

If you are having problems getting applications to connect to a machine, the
following are some debugging tips.

Try getting the appservd to run in stand-alone mode first. When running,
appservd will produce no output and request no input, this is normal. Just try
connecting to the machine with a NetLink client.

If after executing "appservd -d" it returns immediately to the prompt, check the
"appserv.log" file, it will give some information as to why it failed.

The following are some common error numbers:

13 - permission error, you must run appservd -d as root (the log file may
not have been created, also due to permission problems).

48 - the port is already in use, either another appservd is running, or inetd
is configured to run appservd.
49 - there is a problem with TCP/IP on this machine.
50 - the network is down.

Once the appservd is running in stand-alone mode, try using the inetd to run a
script that runs appservd. If this fails, it is generally because the script is failing.
This is difficult to test, because you cannot easily see what is happening in the
script.

Make sure your company’s firewall isn’t interfering; try telneting to the xvttp port
(usually port 508) on that machine, and view the output. You should NOT be able
to see any recognizable text, but if you do it will be an error message from the
script. The point of trying to connect to it via telnet is to make sure that the
inetd daemon is connecting you to appservd properly.

If it is still failing, try executing the script while logged on as root. If no errors
show up, the script is not the problem and you should look at the appserv.log file
for assistance.

Try executing the appservd with a -l parameter to get more verbose logging
information.

All output the application generates to the stdout and stderr FILEs will be logged
to the appserv.log log file (be aware of this in a production environment— output
should be minimized so as not to make the user’s appserv.log file grow too
rapidly.

Copyright 2009 Providence Software Solutions, Inc 23

NOTE: Always make sure that appservd is running as a user who has write
permissions to the appserv.log file.

APP File Format

 <site> [<application>]

XVTnet applications may be bookmarked or loaded via web pages. A XVTnet
bookmark file ends with .app and contains one text line made up of two fields
separated by spaces. The first is the name or IP address of the Application
Server, and the second is the command line to execute. Example:

demo.xvt.com control

Linking to Your Application from the Web

In order for a .app file to be transmitted across the Internet, both the web server
and the web browser need to know what the .app extension means and what
MIME type to map to the extension. As long as the MIME types on both ends are
the same, the actual values don’t really matter. Because we are working to
register the MIME type application/xvt, this is a safe value to use.

The configuration of your web server varies from platform to platform and brand
to brand, but with most Unix Web servers, the config directory contains the file
mime.types. The .app extension should be mapped to the application/xvt MIME
type as follows:

application/xvt app

The browser also needs to know what to do with .app files. Both Netscape and
Internet Explorer give you the ability to specify what happens when specific
MIME-typed files come in. Configure your browser to spawn the NetLink
application when it receives application/xvt files.

Once these associations are made, web pages can be constructed to make
references to whatever application file you want. For example:

Click HERE to do your online banking!

When the user clicks on the word HERE, the server will recognize the .app
extension and send the contents as MIME type application/xvt. The browser will
see that MIME type and run NetLink with the appropriate information necessary
to connect to the server/application you named in the .app file, and the user’s
session will begin.

Copyright 2009 Providence Software Solutions, Inc 24

XVTnet Resource Specifics

XVTnet supports the use of most XVT resources including windows, dialogs,
menus, and icons. NetLink automatically downloads resources as necessary for
remote display. This downloading of resources happens whenever the resource is
used, with the exception of icons. Icon resources are downloaded once the first
time they are used, and cached for future use. In general, the download time for
resources is negligible. User-defined CURSOR resources are not supported in
XVTNET.

XVTnet Optimization Issues

Almost all XVT applications will run surprisingly fast across the Internet using
XVTnet. There may, however, be changes that can be made to optimize
applications so that they run even faster. These changes will be portable, and
may optimize even the non-Internet versions of your application.

Most XVTnet optimization issues will revolve around a very few XVT functions that
require round-trip requests. A round trip request is one that requires a response
be received from the client computer before processing can continue. The time it
takes for data to be returned from the client computer is very long in comparison
to the time it takes to simply send a command and move on.

XVTnet was developed using sophisticated caching techniques that minimize the
effects of round trips in all but a few functions. Caching is performed on almost
all objects in the system such that even if information must be retrieved from the
client computer, it will only be acquired once and retrieved from cache thereafter.

A list of functions which are still heavily impacted by the round-trip effect are
listed in Appendix B. If you are having optimization problems with your
application, it is strongly recommended that you review your usage of functions
that appear on this list.

The delays caused by the round-trip effect are based on the result of return error
values. For example, when you create a window, the server system must wait for
a response from the client to determine if the window creation was successful.

These error-checking round-trip operations are, by default, optimized away with
the use of several XVTnet-specific attributes:

• ATTR_NET_OPTIMIZE_CTL_CREATES
• ATTR_NET_OPTIMIZE_FONT_CREATES
• ATTR_NET_OPTIMIZE_IMAGE_CREATES
• ATTR_NET_OPTIMIZE_LIST_ADD
• ATTR_NET_OPTIMIZE_NAV_CREATES

Copyright 2009 Providence Software Solutions, Inc 25

• ATTR_NET_OPTIMIZE_TXEDIT_CREATES
• ATTR_NET_OPTIMIZE_TX
• ATTR_NET_OPTIMIZE_WIN_CREATES

These optimization attributes are initially set to TRUE. If your application
behaves strangely, it may be due to some unforeseen side effect of these
attributes. Try turning them off if you observe problems. When they are turned
on, the server application will have no way of determining if the object has not
been created until an error message is generated. A symptom caused by this
type of occurrence involves the server application appearing to have a valid
object, but that object causing an invalid object error message when used.
Installing an error handler that will catch such errors can easily squelch this.
Usually, applications behave just fine with them on, however.

Another platform-specific attribute that will assist in optimizations is
ATTR_NET_USE_COMMAND_QUEUE. This attribute determines whether or not
the internal command queue will be used for command processing. The
command queue causes all non-round-trip commands to be queued until either a
round-trip occurs or the event finishes processing. Queuing the commands and
sending them at one time significantly increases speed. Because this attribute
makes debugging the application difficult, it should only be enabled for release
versions.

Masking unused events can also significantly speed up XVTnet. In windows,
E_MOUSE_* events are, by default, always sent. Turning them off with
xvt_win_set_event_mask() will significantly reduce the number of packets
(assuming you aren’t using mouse events—note that they may be necessary if
you use text edit controls in the window).

XVTnet also provides an optimization/debugging tool. Every XVTnet application
can be executed with a ‘-L’ parameter. This parameter causes the application to
generate a logfile of every function that is called, the time (in microseconds) of
when it was called, and whether or not a response from the client computer was
required. This log is an invaluable tool in discovering where optimizations can be
made.

The best course of action for optimizing your application for the Internet is to
simply compile and run the application. In most cases no optimizations will be
necessary. If there are certain places where optimizations are necessary, use the
guidelines given in this section to find out what to do.

Image Processing

The XVTnet system allows for sophisticated image processing across the Internet.
To accomplish this, XVTnet uses the standard XVT bitmap image manipulation
functions to display bitmaps on the client computer. These functions can be used

Copyright 2009 Providence Software Solutions, Inc 26

exactly as documented in the XVT manual, but it will help the developer to know
exactly how and when things happen.

XVT supports both platform-independent images and platform-specific pixmaps.
Both of these are also supported under XVTnet, but it is important to understand
the different ways in which they are handled. Images are platform-specific and
can be directly accessed by the developer, thus they are server-side-resident.
Pixmaps are platform-specific and all details about how they operate are hidden
from the developer; they reside strictly on the client computer.

XVTnet is based in part on the work of the Independent JPEG Group.

Image handling

XVTnet maintains two copies of any image, one on the server and one on the
client. The image on the client remains empty until it needs to be displayed. It is
at this time that the image is transferred from the server to the client. The
system will not transfer the image again unless it has changed. The developer
may want to design his application such that the image is not re-drawn until all
changes have been made.

XVTnet considers the following functions to be image-modifying functions:
• xvt_image_fill_rect
• xvt_image_get_scanline
• xvt_image_set_pixel
• xvt_image_transfer

Pixmap handling

Pixmaps always reside on the client computer. The developer can use pixmaps to
determine exactly when images will be transferred. The developer can display a
message stating “Downloading images…” while he loads images and draws them
into pixmaps. (Notice that it is not necessary to display a dialog when
downloading images as this information is displayed in the status bar.) Once the
images are drawn into pixmaps, these pixmaps can be used instead of the
original image. This technique will improve performance under native XVT
applications, as well as under XVTnet.

Image caching

Caching techniques are used in XVTnet to increase the performance of image
processing. Whenever an image must be downloaded, XVTnet checks in a special
cache directory for a previously downloaded version of the image. If a previous
version is found in cache, that image is automatically used and no transfer is
required. The cache is managed by the remote user and thus need not be a
concern of the application developer. A CRC calculation is used to detect a

Copyright 2009 Providence Software Solutions, Inc 27

previously cached image.

Image compression

XVTnet automatically compresses images using JPEG compression when it
transfers them. Because JPEG is a compression technique, the remote user is
allowed to select from varying degrees of quality vs. speed. This is handled
automatically by XVTNET, and is therefore transparent to the programmer.

Error handling

XVTnet fully supports all of the XVT error handling facilities, including
ATTR_ERRMSG_HANDLER & xvt_errmsg_push_handler/xvt_errmsg_pop_handler.
It is recommended, however, that these facilities not be used when debugging
your application. This is because error signals must be transferred from the client
computer to the server system to be processed by your application. This
signaling process may take some time and may not show up as expected when
debugging the application. If all error message handling facilities are not used,
the error message is generated and displayed on the client screen instantly,
making debugging the application much simpler. For release versions of the
software, the exact timing of the error signal is not as critical.

Printing

XVTnet supports the full range of XVT printing capabilities. All printing actions
occur on the client computer, which is what the remote user would expect. The
remote user will be able to configure his printers, etc. as with any XVT
application. Because of their remote nature, PRINT_RCDs cannot be saved. Any
attempt to load a PRINT_RCD and test with xvt_print_is_valid will fail. Because
this should already be handled in cases such as a user removing a printer, this
requires no change in your application.

Customizing the Client with Custom Messages

Sometimes it is necessary to perform special, custom operations on the client
side that aren't GUI-related. XVTnet allows the application to send arbitrary data
in both directions, from the server to the client and from the client to the server.
The application must supply a function to receive the custom message. The
prototype of the function is as follows:

void xvt_net_receive_packet(XVT_PACKET *packet, short code);

The function must reside in the XIMUL550.DLL library (on Unix systems, the
libxvtxmul550.so library) (that library must be shipped with the client as well).
The XVTnet application-side library must be shipped as well, since this contains
the communications code.

Copyright 2009 Providence Software Solutions, Inc 28

Sending a Message

In order to account for the varying binary representations of information from
platform to platform, the xvt_net_* functions provide a means of transmitting
arbitrary packets back and forth. The XVT_PACKET data type represents the
message to be sent. It must be allocated using:

XVT_PACKET *xvt_net_packet_create(short code);

"code" is an application-defined number that defines the kind of packet being
created. This is useful when more than one kind of packet can be sent across. It
is the application programmer's responsibility to make sure that packets are
written (first in, first out) and read the same way (the same data types in the
same order).

Once an XVT_PACKET has been created, it can be loaded with any arbitrary
amount of data (up to 64K per packet total) using the following functions:

void xvt_net_add_long_param(XVT_PACKET *packet, long value);
void xvt_net_add_short_param(XVT_PACKET *packet, short value);
void xvt_net_add_string_param(XVT_PACKET *packet, const char *str);

All of these functions automatically compensate for big-endian/little-endian binary
representation differences. One function, useful for sending whole binary files
back and forth, is:

void xvt_net_add_void_param(XVT_PACKET *packet, void *data, size_t len);

xvt_net_add_void_param() does not translate any part of the data buffer; it puts
the memory block into the packet exactly as-is.

Once all application-specific data has been added to the packet, it can be sent to
the other end:

void xvt_net_send_packet(XVT_PACKET *packet);

xvt_net_send_packet() returns as soon as the message is sent; it does not wait
for processing to finish on the other end. The message is sent with a higher
priority than GUI packets-- which will queue up and wait for the custom packet to
be sent.

NOTE: Custom packets are limited to less than 64Kbytes. If larger data
elements need to be sent, they should be parted into smaller segments
across multiple messages. Files should be sent using the file

Copyright 2009 Providence Software Solutions, Inc 29

transmission API (See section 5.0)

Once a packet is sent, the system automatically frees the memory—do NOT refer
to the XVT_PACKET pointer thereafter.

Receiving a Message

When the application's xvt_net_receive_packet() function is called because an in-
bound message was received, that message packet is passed as a parameter.
This packet has to be disassembled in the same order it was assembled using the
following functions:

long xvt_net_get_long_param(XVT_PACKET *packet);
param(XVT_PACKET *packet);
char *xvt_net_get_string_param(XVT_PACKET *packet,

char *buffer, size_t len);
void *xvt_net_get_void_param(XVT_PACKET *packet, size_t *len);

No facility is provided for "rewinding" the packet buffer, so save the values as
they are read out.

Once the application’s callback function has returned, the XVT_PACKET is
automatically freed.

XVTnet Encryption

XVTnet does not by default use encryption, but it does provide all the
overrideable function callback mechanisms necessary to allow the application
programmer to use the encryption mechanism of choice. XVTnet offers a number
of security options:

• No encryption/security

• A password is necessary to access the application

• Each user logs in with a username and password, optionally with DES
encryption keyed on the password

• Public/private key encryption

At startup, before the main() function is called, xvt_net_crypt_init() is called on
both the client and the server.

void xvt_net_crypt_init(const char *key, XVT_KEY_TYPE type);

Copyright 2009 Providence Software Solutions, Inc 30

At shutdown, after the TASK window’s E_DESTROY event is triggered, the
xvt_net_crypt_terminate() callback function is called on both the client and the
server. This function is expected to clean up any resources allocated to the
encryption/decryption of XVTnet data packets.

void xvt_net_crypt_terminate(void);
Whenever the client or the server is ready to send a buffer of data, the
xvt_net_crypt_calc_encrypted_size() callback function is called. This application-
supplied function returns number of bytes that must be allocated for a message
of size len to be encrypted. XVTnet allows the encrypted size to be larger in case
there is extra information necessary to decrypt the buffer, or in case there are
any extra data the application wants to send along with the message.

size_t xvt_net_crypt_calc_encrypted_size(size_t len);

Once XVTnet knows that size, it allocates a buffer large enough, and places the
data to be encrypted at the beginning of that buffer, and it calls the application-
supplied xvt_net_crypt_encrypt() callback function.

void xvt_net_crypt_encrypt(void *buffer, size_t len);

xvt_net_crypt_encrypt() then encrypts (in place) the data buffer. If a temporary
buffer is needed for the encryption process, it is up to the application to supply it.

When data is received, the application-supplied function xvt_net_crypt_decrypt()
is called. It must decrypt the buffer in place.

void xvt_net_crypt_decrypt(void *buffer, size_t len);

When initiating encryption using user validation, the server can call
xvt_net_crypt_get_password(), an application-supplied function that looks up a
user record by username and returns (in clear text) the password associated with
that account. This is then passed to xvt_net_crypt_init() as an
XVT_GENERAL_KEY, useful for instance in setting up DES keys:

char *xvt_net_crypt_get_password(char *username);

xvt_net_crypt_get_public_key() and xvt_net_crypt_get_private_key() are (client-
side) application-supplied callback functions called by the client and are asked to
provide the client’s public and private keys when negotiating public/private key
exchanges.

char *xvt_net_crypt_get_public_key(void);
char *xvt_net_crypt_get_private_key(void);

Copyright 2009 Providence Software Solutions, Inc 31

xvt_net_crypt_generate_key() is the application-supplied callback function called
by the server when it asked to send the server’s general key for public/private
encryption.

char *xvt_net_crypt_generate_key(void);

The function must reside in the XIMUL458.DLL library (on Unix systems, the
libxvtxmul458.so library) (that library must be shipped with the client as well).
The XVTnet application-side library must be shipped as well, since this contains
the communications code.

Various log-in scenarios

Logon – No user validation, no encryption
No negotiation is necessary. The stub libraries provided by XVT do this
automatically; no application-customization is necessary.

Logon – Application validation
The application has a single password protecting its usage, and the application is
encrypted (possibly using DES).
• This option is initiated by placing a “-oa<password>” parameter on the server

command line.
• The application’s name is sent to client.
• The client displays the application’s name and prompts the user for the

application’s password.
• The server and the client call the application-provided function.

xvt_net_crypt_init() with the password as an XVT_GENERAL_KEY.
• The server and the client exchange passwords (encrypted) and verify.

Logon – User validation
Users each have their own password to the application and the application is
encrypted (possibly using DES).
• This option is initiated by placing a “-ou” parameter on the server command

line.
• The client displays the username/password dialog.
• The username is sent to the server.
• The server calls the application-provided function

xvt_net_crypt_get_password(), passing it the username.
• xvt_net_crypt_get_password() returns the clear-text password for that user.
• The server calls xvt_net_crypt_init() with the password as an

XVT_GENERAL_KEY.
• The client calls xvt_net_crypt_init() with the password as an

XVT_GENERAL_KEY.
• The server and the client exchange passwords (encrypted) and verify.

Copyright 2009 Providence Software Solutions, Inc 32

Logon – Public/Private Key encryption
The server and the client use public/private key encryption to maintain secure
communications.
• This option is initiated by placing a “-op” parameter on the server command

line.
• The client retrieves public/private key with xvt_net_crypt_get_public_key()

and xvt_net_crypt_get_private_key().
• The client sends its public key to the server.
• The server calls xvt_net_crypt_init() with the public key as an

XVT_PUBLIC_KEY.
• The client calls xvt_net_crypt_init() with the private key as an

XVT_PRIVATE_KEY.
• The server generates a general key by calling xvt_net_crypt_generate_key ().
• The server sends the general encryption key (generated by server) to the

client.
• The server and the client call xvt_net_crypt_init() with the general key as an

XVT_GENERAL_KEY.
• The server and the client exchange general keys (encrypted) and verify.

XVTnet File transfer functions

XVTnet provides two functions for transferring entire data files back and forth
between the client and the server. These functions move the files back and forth
with no binary data translation or ASCII end-of-line translation—it is a complete
binary copy.

Sending a file to the client

BOOLEAN xvt_net_send_file_to_client(const char *fname,
BOOLEAN wait)

This function will attempt to transfer the specified file to the client. If the wait
parameter is true, this function will not return until the file has actually arrived at
the client site. If the wait parameter is false, this function will return
immediately, even though the file is continuing to transfer. The transfer will
occur in the background allowing the user to continue interacting with the
application. If the wait parameter is set to TRUE, the transfer may be faster
(depending on network bandwidth and usage).

Return Value:
The return value specifies whether or not the file transfer was initiated
successfully. A return value of FALSE indicates either a catastrophic failure
(unlikely) or that the client user refused to accept the file.

Copyright 2009 Providence Software Solutions, Inc 33

Fetching a file from the client

char *xvt_net_get_file_from_client(char *fname,
size_t max_fname, BOOLEAN wait)

This function will attempt to retrieve the specified file from the client. The client
user may elect to send a different file instead, which will cause the frame buffer
to be filled with the actual name selected by the client.

If the wait parameter is TRUE, this function will not return until the file has
arrived successfully at the host site. If the wait parameter is FALSE, this function
will return immediately, even thought the file has not yet arrived, the file will be
transferred in the background allowing user interaction to continue.

Return Value:

The return value specifies whether or not the file transfer was initiated
successfully. A return value of NULL indicates either a catastrophic failure
(unlikely) or that the client user refused to accept the file, otherwise a pointer to
the fname buffer is returned.

Command Line Arguments

Though not necessary for most applications, Netlink supports the following
command line arguments in any order and combination:

-l or L Enables logging to the local file “netlink.log”.
-s or S socket_id Spawns the Netlink for the socket ‘socket_id’.
-r or R server_id:port_id Enables a proxy connection through the server

‘server_id’ using the port
‘port_id’. ‘server_id’ can be in the form of a
qualified DNS name or static IP address.

-w or W server_id:port_id Enables a web service connection through the
server ‘server_id’ using the port ‘port_id’.
‘server_id’ can be in the form of a qualified DNS
name or static IP address.

-p or P Specifies Netlink to use the port ‘port_id’ instead The default of the
default port.

-application.app Specifies Netlink to use the APP ‘application’ for
default connection information. If not specified,
Netlink will reference the APP file ‘default.app’ if
available for connection information otherwise a
dialog will be displayed upon launch asking for
server and application.

Copyright 2009 Providence Software Solutions, Inc 34

netlink.cfg

Netlink uses the netlink.cfg to store preferences. Currently three pieces of
information are stored in netlink.cfg: Graphics Quality, Cache maximum and
Default IP address. Even though netlink.cfg is a text file, it is best not to edit by
hand. Instead, use the Options command under the Netlink menu.

Bookmark Files and the APP File Format

XVTnet applications may be bookmarked or loaded via web pages. Bookmark
files are stored in the APPS directory local to the Netlink application and allow
Netlink to connect to applications specified by a name. The bookmark name(s)
will appear in Netlink’s Applications menu.

A XVTnet bookmark file ends with .app and contains one text line made up of two
fields separated by spaces. Example:

<site> [<application>]

The first is the name or IP address of the Application Server, and the second is
the command line to execute. Example:

demo.xvt.com control

Linking to Your Application from the Web

In order for a .app file to be transmitted across the Internet, both the web server
and the web browser need to know what the .app extension means and what
MIME type to map to the extension. As long as the MIME types on both ends are
the same, the actual values don’t really matter. Because we are working to
register the MIME type application/xvt, this is a safe value to use.

The configuration of your web server varies from platform to platform and brand
to brand, but with most Unix Web servers, the config directory contains the file
mime.types. The .app extension should be mapped to the application/xvt MIME
type as follows:

application/xvt app

The browser also needs to know what to do with .app files. Both Netscape and
Internet Explorer give you the ability to specify what happens when specific
MIME-typed files come in. Configure your browser to spawn the NetLink
application when it receives application/xvt files.

Once these associations are made, web pages can be constructed to make
references to whatever application file you want. For example:

Copyright 2009 Providence Software Solutions, Inc 35

Click HERE to do your online banking!

When the user clicks on the word HERE, the server will recognize the .app
extension and send the contents as MIME type application/xvt. The browser will
see that MIME type and run NetLink with the appropriate information necessary
to connect to the server/application you named in the .app file, and the user’s
session will begin.

Conclusion

As can be seen in this document, the Internet as well as corporate Intranets can
benefit greatly from the XVTnet technology. It adds a new tool for network
developers, a tool which can work with, and complement the capabilities of the
existing tools. Access to XVTnet applications can be seamlessly integrated into
the net and accessed with little or no knowledge of its internal workings by users.
This access will be secure and reliable as well as fast and efficient. Providence
Software Solutions, Inc. provides a Cross Platform C/C++ IDE and libraries, XVT.
With a long-standing reputation for addressing application portability needs with a
comprehensive cross-platform application development solution that spans 12
operating systems, Providence offers both the products and services to extend
your market reach and maximize your software investment. The XVTnet
technology provides a completely new capability for developing Internet and
Intranet solutions. The XVTnet technology provides a robust, flexible, and secure
capability for providing complete large- scale applications of virtually any type
across the Internet or Intranet.

Copyright 2009 Providence Software Solutions, Inc 36

A
APPENDIX A: Server Environment

Default root

MOTIFHOME=/usr/X11R6
XVT_DSC_DIR=/home/builder/xvtdsc580
XVT_XVTNET_DIR=/home/builder/xvtdsc580
LD_LIBRARY_PATH=/usr/lib:/usr/local/lib:/home/builder/xvtdsc580
PATH=/usr/X11R6/bin:/home/builder/xvtdsc580/bin
UIDPATH=./%U:/home/builder/xvtdsc580/bin/%U

Copyright 2009 Providence Software Solutions, Inc 37

B
APPENDIX B: SSL certificates

create the folders to hold the certificate and the key
cd /home/builder
mkdir certs
mkdir keys

copy the pki localhost to appserv.crt in the same location as the
localhost.crt
cp -f /etc/pki/tls/certs/localhost.crt
/etc/pki/tls/certs/appserv.crt

copy the pki localhost to appserv.key in the same location as the
localhost.key
cp -f /etc/pki/tls/private/localhost.key
/etc/pki/tls/private/appserv.key

go to the local certs folder and create a symbolic link to the
appserv.crt
cd /home/builder/certs
ln -s /etc/pki/tls/certs/appserv.crt appserv.crt

go to the local keys folder and create a symbolic link to the
appserv.key
cd /home/builder/keys
ln -s /etc/pki/tls/private/appserv.key appserv.key

restart xinetd service to link up the appserv configuration with
the new cert/key location and file names
service xinitd restart

Copyright 2009 Providence Software Solutions, Inc 38

C
APPENDIX C: What is xinetd?

The xinetd daemon is a TCP wrapped super service which controls

access to a subset of popular network services including FTP, IMAP,

and Telnet. It also provides service-specific configuration options

for access control, enhanced logging, binding, redirection, and

resource utilization control.

When a client host attempts to connect to a network service

controlled by xinetd, the super service receives the request and

checks for any TCP wrappers access control rules. If access is

allowed, xinetd verifies that the connection is allowed under its own

access rules for that service and that the service is not consuming

more than its alloted amount of resources or is in breach of any

defined rules. It then starts an instance of the requested service

and passes control of the connection to it. Once the connection is

established, xinetd does not interfere further with communication

between the client host and the server.

Red Hat Enterprise Linux 4: Reference Guide

Copyright 2009 Providence Software Solutions, Inc 39

D
APPENDIX D: Typical xinetd configuration

default: on
description: Vend XVT DSC/DSC++ Net applications as requested from XVT Netlink client.
service xvttp
{

required entries for service
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root

select the port if different than defined in services
port = 443

new environment to be passed to appserv
 env += DISPLAY=:0.0
 env += XVT_DSC_DIR=/home/builder/xvtdsc580
 env += XVT_DSI_DIR=/home/builder/xvtdsc580
 env += XVTPATH=/home/builder/xvtdsc580/print
 env += MOTIFHOME=/usr/X11R6
 env += LD_LIBRARY_PATH=/home/builder/xvtdsc580/lib
 env += UIDPATH=./%U:/home/builder/%U:/home/builder/xvtdsc580/bin/%U

existing environment to be passed to appserv
 passenv += LANG
 passenv += PATH

server and arguements
 server = /home/builder/xvtdsc580/bin/appserv
 server_args = -l -os -k /home/builder/keys/appserv.key -c /home/builder/certs/appserv.crt
}

Copyright 2009 Providence Software Solutions, Inc 40

E
APPENDIX E: Java Web Start Setup

The directory hierarchy required to launch a XVTnet application with Java Web
Start is detailed below. The naming of the directories is important as they are
referenced by different components in the process. The case of the names is also
important.
The www/ folder below refer to a directory that needs to be created on the web
server and made visible to the internet. It can be called whatever is appropriate
for the visible folder.
The files required to successfully launch an XVTnet based application developed
with XVTnet 5.8 are listed below in a directory hierarchy:

www/
XVTnet.html
xvtnet.jnlp
images/

XVTnet_logo.jpg
lib/

xvtnet.jar
linux/

netlinks
win32

netlink.exe

Web Server Requirements

Java Web Start was first introduced in Java version 1.3 and has been included in
each subsequent release. The web server that is going to serve the HTML page
must have Java 1.3 or later installed and configured. Even if the web server does
not require Java for anything else, Java must be installed and put in the path.
Also the server must be configured to use the MIME type JNLP. Most server
operating systems released in the last 2 or 3 years probably already has this
MIME type define, but if not, it must be defined for Java Web Start to work.

1. xvtnet.html
The xvtnet.html file is the mechanism that starts the entire launch process. This
file has been kept to the bare minimum to be viewed in a browser and do the
necessary steps to launch a .jnlp file. Although the exact contents of the .html file
can be altered and modified, the sections written in script need to remain
somewhat in tack. The most important part however is the link to the .jnlp file.

Copyright 2009 Providence Software Solutions, Inc 41

This is really the central purpose of the existence of the html page.
2. xvtnet.jnlp

The xvtnet.jnlp is the configuration file for the launching of the XVTnet application
via Java Web Start. There are several places that will need to be changed to
match the server it is being loaded on and optional changes that can be made to
alter the parameters passed to the Netlink application. An .app file is created at
runtime and placed in the folder on the client. This .app file uses the information
from the xvtnet.jnlp file to configure Netlink to launch without user input.
The entire xvtnet.jnlp file is included below to highlight the sections that need to
be changed to fit the server environment it is being run from.

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for XVTnet Sample Application -->
<jnlp
 spec="1.0+"
 codebase="http://www.providencesoftware.com/XVTnet/"
 href="xvtnet.jnlp">
 <information>
 <title>XVTnet Sample Application</title>
 <vendor>Providence Software Solutions, Inc.</vendor>
 <homepage href="XVTnet.html"/>
 <description>XVTnet Sample Application</description>
 <description kind="short">XVTnet Sample Application</description>
 <icon href="images/xvt_logo.jpg"/>
 <icon kind="splash" href="images/xvt_logo.jpg"/>
 </information>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <!--The minimum version of Java JRE required -->
 <j2se version="1.4.2"/>
 <j2se version="1.4+"/>

 <!-- The full url of the jar file location -->
 <property name="urlString" value="http://www.providencesoftware.com/XVTnet/lib/"/>

 <!-- Name of the app file for XVTnet to read. This should not need to be changed -->
 <property name="appFile" value="xvtnet.app"/>

 <!-- The fully qualified name or ip address of the machine that is running appserv -->
 <property name="appServer" value="omar.nrlmry.navy.mil"/>

 <!-- The default port number that appserv is listening on -->
 <property name="defaultPort" value="443"/>

 <!-- The default ip address of the machine that is running appserv -->
 <property name="defaultIP" value="omar.nrlmry.navy.mil"/>

 <!-- The logging level for Netlink to use. The values are "true" or "false". -->
 <property name="logging" value="true"/>

 <!-- The requirement of using SSL. Values are "true" and "false". -->
 <property name="requireSSL" value="true"/>

 <!-- The name that appserv uses from trust.app to reference this application -->
 <property name="appName" value="XVTnet_ssl"/>

 <!-- This tells app whether or not to use a proxy server. Values are "true" or "false" -->
 <property name="useProxy" value="false"/>

 <!-- This tells app the name of the proxy server. Values are "" or the proxy name -->
 <property name="proxyServer" value=""/>

 <!-- This tells app the proxy server port. Values are "" or a port number -->
 <property name="proxyPort" value=""/>

 <!-- This tells app whether or not the proxy server uses HTTP 1.1. Values are "true" or "false" -->
 <property name="proxyHTTP11" value="true"/>

 <!-- This tells app whether or not to use a web service. Values are "true" or "false" -->
 <property name="useProxyWS" value="false"/>

Copyright 2009 Providence Software Solutions, Inc 42

 <!-- This tells app the name of the web service server. Values are "" or the web service name -->
 <property name="proxyServerWS" value=""/>

 <!-- This tells app the web service port. Values are "" or a port number -->
 <property name="proxyPortWS" value=""/>

 <!-- This tells app whether or not the web service uses HTTP 1.1. Values are "true" or "false" -->
 <property name="proxyHTTP11WS" value="false"/>

 <!-- The level of graphics quality. Values are 1 = exact, 2 = accurate, 3 = fast, 4 = fastest, 1000
= grayscale and is added to the other values-->
 <property name="graphicsQuality" value="2"/>

 <!-- The size of the cache maximum in megabytes -->
 <property name="cacheMaximum" value="5"/>

 <!-- This property tells the app to keep it's dll's on the local machine to speed up application
startup. Values are "true' or "false" -->
 <property name="keepLocalFiles" value="true"/>

 <!-- This property tells the app to verify files that are sent back and forth. Values are "true' or
"false" -->
 <property name="verifyFiles" value="true"/>

 <!-- This property tells the app to keep create output.txt on the local machine to verify or debug
the execution command line. Values are "true' or "false" -->
 <property name="createOutput" value="true"/>

 <!-- This property tells the Netlink to start in minimized or regular mode. Values are "true' or
"false" -->
 <property name="startMinimized" value="true"/>

 <!-- The location of the jar file. If package is unzipped properly, this should not need to be edit-
ted -->
 <jar href="lib/xvtnet.jar"/>
 </resources>
 <application-desc main-class="com.pss.dsw.XVTnet"/>
</jnlp>

3. xvtnet.jar

The xvtnet.jar file contains the compiled Java binaries to respond to when the
.jnlp processing requests it. The Java programs are generic in the sense that they
will launch XVTnet Netlink in either Windows 32 bit or Linux 32 bit format. It
refers to and uses the files in the /lib folder called /win32 and /linux. Both of the
folders contain the executable version of Netlink version 5.8 from XVTNET. In
order to update the binaries, the new copy simply needs to be copied into the
appropriate folder in the /lib folder.

4. linux/
The linux folder contains the Linux version of XVTnet Netlink version 5.8 and the
supporting shared libraries. These files can be updated with new builds simply by
copying them into the linux folder.

5. win32/
The win32 folder contains the Windows 32 bit version of XVTnet Netlink version
5.8 and the supporting DLL files. These files can be updated with new builds
simply by copying them into the win32 folder.

6. Summary
The application should be build with the same XVTnet version as the Netlink and
supporting files loaded onto the web server. Once this directory structure is in
place, the HTML file should be modified to the requirements and likings to post on

Copyright 2009 Providence Software Solutions, Inc 43

the network. When this page is brought up in a browser, the user simply clicks on
the Application link to launch the Java Web Start process. Java Web Start reads
the xvtnet.jnlp file and calls the XVTnet constructor function of the compiled
XVTnet Java class. The .jar file classes copy over to the client the files listed in
the appropriate platform folder and then executes Netlink with the parameters
specified in the .jnlp file. If the xvtnet.app file is specified, Netlink will connect to
the XVTnet Appserver and execute the XVTnet application. Performance is based
on the speed of the internet at the time of use.

Copyright 2009 Providence Software Solutions, Inc 44

F
APPENDIX F: Platform-Specific Attributes

ATTR_NET_SPECIAL_TXEDIT

Enables or disables special handling for text edits. This causes the
xvt_tx_process_events function to automatically occur on the client computer for
events which match the given event mask. This increases text edit performance,
but does not allow event filtering by your application for the events matching the
mask.

Uses win argument Yes
xvt_vobj_get_attr returns Previously set value
xvt_vobj_set_attr effect Enables or Disables special processing
xvt_app_create use: Can use either before or after
Default value EM_NONE
Argument type EVENT_MASK

ATTR_NET_SYNC_MODE

Enables or disables synchronous event mode for the given window. In
synchronous event mode the return value for each event is waited for by the
client computer, thus causing each event to become a round-trip. This will slow
down the application, but may help debug timing problems. The following events
are always asynchronous: E_UPDATE, E_MOUSE_MOVE, and E_TIMER. The
E_DESTROY event is always synchronous.

Uses win argument Yes
xvt_vobj_get_attr returns Previously set value
xvt_vobj_set_attr effect Enables or Disables special processing
xvt_app_create use: Can use either before or after
Default value FALSE
Argument type XVTNET_SYNC_MODE

ATTR_NET_REMOTE_EXEC

Executes a command line on the client computer. Note that the client computer
must be able to understand and execute the command line, or it will display an
error message to the user. The developer may use the ATTR_NET_REMOTE_OS

Copyright 2009 Providence Software Solutions, Inc 45

attribute to determine the client operating system when formatting the command
line.

When the user executes this command, he will see a dialog which reads “About to
execute the following command line:” A checkbox reading “Don’t ask again about
this app” can be checked when the user trusts the application, and the dialog will
no longer appear.

Uses win argument No
xvt_vobj_get_attr returns Illegal
xvt_vobj_set_attr effect Causes execution of command line
xvt_app_create use: Can use either before or after
Default value NONE
Argument type STR

ATTR_NET_OPTIMIZE_CTL_CREATES
ATTR_NET_OPTIMIZE_FONT_CREATES
ATTR_NET_OPTIMIZE_IMAGE_CREATES
ATTR_NET_OPTIMIZE_LIST_ADD
ATTR_NET_OPTIMIZE_NAV_CREATES
ATTR_NET_OPTIMIZE_TXEDIT_CREATES
ATTR_NET_OPTIMIZE_TX
ATTR_NET_OPTIMIZE_WIN_CREATES

These attributes enable or disable the optimization of error checking return values
on creates statements. If optimization is enabled (TRUE), return values will not
be checked for errors. See section 2.4 for more information.

Uses win argument No
xvt_vobj_get_attr returns Previously set value
xvt_vobj_set_attr effect Enables or Disables special processing
xvt_app_create use: Can use either before or after
Default value TRUE
Argument type BOOLEAN

ATTR_NET_REMOTE_OS

Retrieves the XVT_OS macro value for the client computer. This allows the
programmer to specially design his application for a given client OS.

Uses win argument No
xvt_vobj_get_attr returns XVT_OS macro value
xvt_vobj_set_attr effect Illegal
xvt_app_create use: Can use either before or after
Default value NONE

Copyright 2009 Providence Software Solutions, Inc 46

Argument type XVT_OS value

ATTR_NET_REMOTE_WS

Retrieves the XVTWS macro value for the client computer. This allows the
programmer to specially design his application for a given e windowing system.
This also determines which e platform-specific attributes will work properly.

Uses win argument No
xvt_vobj_get_attr returns XVTWS macro value
xvt_vobj_set_attr effect Illegal
xvt_app_create use: Can use either before or after
Default value NONE
Argument type XVTWS value

ATTR_NET_REMOTE_VERSION

Retrieves the version number information of the remote NetLink client software.
This attribute can be used to enable or disable usage of features supported by
newer clients that are not supported by older clients. The version number
information is encoded into the long word return value as follows:
First 8 bits Major version #
Second 8 bits Minor version #
Final 16 bits Revision #

Uses win argument No
xvt_vobj_get_attr returns Client version number
xvt_vobj_set_attr effect Illegal
xvt_app_create use: Can use either before or after
Default value NONE
Argument type long

ATTR_NET_STATUS_STATUS_SET

Sets the status value in the status bar on the client computer. The status value is
generally used by XVTnet and NetLink to display status information as processing
occurs. This attribute can be used to allow the developer to display his own
messages. The value for this string can be a maximum of 10 characters; any
other characters will be truncated. This is the second, smaller field in the
statusbar.

Uses win argument No
xvt_vobj_get_attr returns Illegal

Copyright 2009 Providence Software Solutions, Inc 47

xvt_vobj_set_attr effect Sets value into status bar
xvt_app_create use: Can use either before or after
Default value NONE
Argument type STR

ATTR_NET_STATUS_TEXT_SET

Sets the text value in the statusbar on the client computer. The text value is
generally used by XVTnet and NetLink to display general information as
processing occurs. This attribute can be used to allow the developer to display
his own messages. The value for this string can be any length, but not all of the
string may be viewed depending on the client screen resolution and current
window size. This is the field in the statusbar.

Uses win argument No
xvt_vobj_get_attr returns Illegal
xvt_vobj_set_attr effect Sets value into statusbar
xvt_app_create use: Can use either before or after
Default value NONE
Argument type

ATTR_NET_CLIENT_SYNC

Causes the server and client applications to synchronize once. All command and
event queues will be flushed and any errors that may occur will have occurred.
This attribute allows the developer to gain some control over application timing
when queuing is involved.

Uses win argument No
xvt_vobj_get_attr returns Illegal
xvt_vobj_set_attr effect Causes synchronization
xvt_app_create use: Can use either before or after
Default value NONE
Argument type ignored

ATTR_NET_USE_LOCAL_TIMERS

Causes XVTnet to use local timers to generate timer events instead of using the
client timer. By default, the client computer will generate events based on timers
created. Due to network delays, however, these events may not arrive in a
controllable interval. Using local timers allows for controllable intervals, but may
cause problems with queue flooding if the interval is too small. For this reason,
local timers should not be used to generate graphical commands.

Copyright 2009 Providence Software Solutions, Inc 48

Uses win argument No
xvt_vobj_get_attr returns Previously set value
xvt_vobj_set_attr effect Enables or Disables special processing
xvt_app_create use: Can use either before or after
Default value FALSE
Argument type BOOLEAN

ATTR_NET_USE_COMMAND_QUEUE

Causes XVTnet to queue commands before sending them to the client system.
This can significantly speed complex drawing operations, but makes debugging
difficult. It is recommended that this attribute be enabled for release versions of
the software only.

Uses win argument No
xvt_vobj_get_attr returns Previously set value
xvt_vobj_set_attr effect Enables or Disables special processing
xvt_app_create use: Can use either before or after
Default value FALSE
Argument type

XVTnet Client platform-specific attributes

The following attributes are specific to the client platform. The attributes will not
generate errors when the client system does not support them, they will simply
be ignored in the case of set_attr and return 0 in the case of get_attr. Each of
these attributes is prefixed with the text ATTR_NET_R, which is then followed by
the platform-specific attribute text. See the appropriate platform-specific book
for more detailed information regarding these attributes.

Windows/Windows 95/Presentation Manager (OS/2)/Windows NT:
ATTR_NET_RWIN_DELAY_FOCUS_EVENTS
ATTR_NET_RWIN_MENU_CACHE_COUNT_MAX
ATTR_NET_RWIN_PM_SPECIAL_1ST_DOC
ATTR_NET_RWIN_R3_DIALOG_PLACEMENT
ATTR_NET_RWIN_USE_PCL_RECTS

Copyright 2009 Providence Software Solutions, Inc 49

F
APPENDIX F: Round-Trip Commands and Attributes

The following is a list of round-trip commands. If you are experiencing
optimization issues with your XVTnet application, you should look at your usage
of these commands.

Always round-trip commands
xvt_app_escape
xvt_app_get_file
xvt_app_get_files_count
xvt_app_process_pending_events
xvt_cb_close
xvt_cb_get_data
xvt_cb_has_format
xvt_cb_open
xvt_ctl_get_colors
xvt_ctl_get_native_colors
xvt_ctl_get_text_sel
xvt_dm_post_ask
xvt_dm_post_error
xvt_dm_post_fatal_exit
xvt_dm_post_font_sel
xvt_dm_post_message
xvt_dm_post_note
xvt_dm_post_page_setup
xvt_dm_post_string_prompt
xvt_dm_post_warning
xvt_dwin_get_font_app_data
xvt_dwin_get_font_family
xvt_dwin_get_font_family_mapped
xvt_dwin_get_font_native_desc
xvt_dwin_get_font_size
xvt_dwin_get_font_size_mapped
xvt_dwin_get_font_style
xvt_dwin_get_font_style_mapped
xvt_errmsg_pop_handler
xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_family_styles
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes

xvt_font_deserialize
xvt_font_get_family_mapped
xvt_font_get_size
xvt_font_get_size_mapped
xvt_font_get_style
xvt_font_get_style_mapped
xvt_font_get_win
xvt_font_has_native_desc
xvt_font_is_mapped
xvt_font_is_print
xvt_font_is_scalable
xvt_font_is_valid
xvt_font_map
xvt_font_serialize
xvt_list_count_all
xvt_list_count_sel
xvt_list_get_all
xvt_list_get_elt
xvt_list_get_first_sel
xvt_list_get_sel
xvt_list_get_sel_index
xvt_list_is_sel
xvt_list_rem
xvt_list_set_sel
xvt_menu_get_tree
xvt_palet_add_colors
xvt_palet_add_colors_from_image
xvt_palet_create
xvt_palet_default
xvt_palet_get_colors
xvt_palet_get_ncolors
xvt_palet_get_size
xvt_palet_get_tolerance
xvt_palet_get_type

Copyright 2009 Providence Software Solutions, Inc 50

xvt_pict_create
xvt_print_close_page
xvt_print_create
xvt_print_create_win
xvt_print_get_next_band
xvt_print_is_valid
xvt_print_open
xvt_print_open_page
xvt_print_start_thread
xvt_scr_get_focus_topwin
xvt_scr_get_focus_vobj
xvt_scr_list_wins
xvt_tx_destroy
xvt_tx_get_active
xvt_tx_get_attr
xvt_tx_get_limit
xvt_tx_get_line (A_GET only)
xvt_tx_get_margin
xvt_tx_get_next_tx
xvt_tx_get_num_chars
xvt_tx_get_num_lines
xvt_tx_get_num_par_lines
xvt_tx_get_num_pars

xvt_tx_get_origin
xvt_tx_get_sel
xvt_tx_get_tabstop
xvt_tx_get_view
xvt_tx_is_scroll_update
xvt_tx_rem_par
xvt_tx_set_par
xvt_vobj_get_attr (depends on attr)
xvt_vobj_get_flags
xvt_vobj_get_outer_rect
xvt_vobj_get_title
xvt_vobj_is_focusable
xvt_vobj_is_valid
xvt_vobj_translate_points
xvt_win_get_ctl_colors
xvt_win_get_cursor
xvt_win_get_event_mask
xvt_win_has_menu
xvt_win_list_wins
xvt_win_process_modal
XVTNET_win_set_handler_external
XVTNET_remote_sync

Round-trip when creation optimization is disabled
xvt_ctl_get_font
xvt_dlg_create_def
xvt_dlg_create_res
xvt_event_get_font
xvt_font_create
xvt_image_create
xvt_menu_get_font_sel
xvt_nav_create
xvt_pmap_create

xvt_tx_create
xvt_tx_create_def
xvt_tx_get_font
xvt_win_create
xvt_win_create_def
xvt_win_create_res
xvt_win_get_ctl
xvt_dwin_get_font
xvt_win_get_tx

Round-trip once, cached afterwards
xvt_ctl_get_id
xvt_dwin_draw_image
xvt_dwin_get_draw_ctools
xvt_dwin_get_font
xvt_dwin_get_font_metrics
xvt_dwin_get_text_width
xvt_font_get_family
xvt_font_get_metrics
xvt_font_get_native_desc

xvt_nav_list_wins
xvt_tx_get_rect
xvt_tx_get_win
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_palet
xvt_vobj_get_parent_win
xvt_vobj_get_type

Copyright 2009 Providence Software Solutions, Inc 51

One-time round-trip
xvt_app_get_default_ctools

Round-trip unless ATTR_NET_USE_LOCAL_TIMERS == TRUE
xvt_timer_create

Round-trip unless ATTR_NET_OPTIMIZE_TX == TRUE
xvt_tx_add_par xvt_tx_append
xvt_tx_clear

Round-trip unless ATTR_NET_OPTIMIZE_LIST_ADD == TRUE
xvt_list

Copyright (C) 2008 - Providence Software Solutions, Inc. - All Rights Reserved 52

	Introduction
	Current Internet/Intranet solutions
	The XVTnet Technology
	Differences from Other XVT Platforms
	Comparisons with Existing Technology
	HTML/CGI
	CGI or Common Gateway Interface
		
	JAVA
	The X Window System
	Winframe
	The Toolkit 	
	User Events
	GUI Commands
	Information Requests
	Security
	Host-side Application Execution
	Packet Encryption
	User to Host Verification
	Host to User Verification
	Bandwidth
	More Interactive WEB Pages
	On-line banking
	Client-Server
	X Window System replacement
	On-line Gaming
	Educational Software
	Subscription Software/Software as a Service (SaaS)
	Multi-user Interactive Software
	Enhanced Terminal Software
	Setting up the XVT/XVTnet Build Environment
	Changes to Existing XVT Makefiles
	Executing an XVT/XVTnet Application
	Setting up an XVT Application Server
	Windows NT Application Server
	Unix application server
	Debugging
	APP File Format
	Linking to Your Application from the Web
	XVTnet Resource Specifics
	XVTnet Optimization Issues
	Image Processing
	Image handling
	Pixmap handling
	Image caching
	Image compression
	Error handling
	Printing
	Customizing the Client with Custom Messages
	Sending a Message
	Receiving a Message
	XVTnet Encryption
	Various log-in scenarios
	XVTnet File transfer functions
	Sending a file to the client
	Fetching a file from the client
	Command Line Arguments
	netlink.cfg
	Bookmark Files and the APP File Format
	Linking to Your Application from the Web
	Conclusion
	
	APPENDIX A: Server Environment
	APPENDIX B: SSL certificates
	APPENDIX C: What is xinetd?
	APPENDIX D: Typical xinetd configuration
	APPENDIX E: Java Web Start Setup
	APPENDIX F: Platform-Specific Attributes

